
S E 492
Team sdmay23-05
April 30, 2023
On-Ground vs On-Cloud AI Training Report

Introduction 1
Dataset 1
VM Specifications 2
AWS Specifications 2
Comparison Specs 3
AI Model 4
Model Hyperparameters 4
On-Ground Training on Full Dataset 5
Process to Train Model On-Ground 5
Process to Train Model in AWS Sagemaker 5
Comparison 1: VM GPU vs AWS CPU 10

Training Results on VM 10
Training Results on AWS CPU 10

Comparison 2: VM GPU vs AWS GPU 11
Training Results on AWS GPU 11
Training Results on VM GPU 11

Cost 12
Comparison/Analysis 12
Conclusion 12
Appendix 13

Introduction
For this part of the project, we developed a binary image classification AI model to classify skin
lesions from the publicly available ISIC dataset as benign or malignant. We then trained the
model in a local environment and a cloud environment to compare the performance and results.
The goals are to document the process of training an AI model in the cloud and to analyze the
costs and benefits of training in the cloud compared to training locally.

Dataset
The data stems from the International Skin Imaging Collaboration (ISIC) publicly-available
library of skin lesions. The organization represents a collaborative effort between academics and
industry agents toward developing methods of recognizing and detecting melanoma. They
provide a vast open-source library of images of skin lesions of known classifications, with a



broader goal of classifying other skin disorders. Throughout this project, we trained our model
using images found through the ISIC archive’s benign/malignant filter.1 The number total
number of benign and malignant images in the archive is 59,676 and 7,061 images respectively.
We started training on a small subset of these images and incrementally scaled the dataset before
eventually training on the full 67,835 images.

VM Specifications
Linux sdmay23-05.ece.iastate.edu 5.15.0-52-generic #58-Ubuntu SMP x86_64 x86_64 x86_64
GNU/Linux

CPU Info:
Product: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz
Architecture: x86_64
Cores: 8
Max Memory Size: 768 GB
Memory Type: DDR4-2666
Maximum Memory Speed: 2666 MHz

GPU Info:
Product: TU102GL [Quadro RTX 6000/8000]
Width: 64 bits
Clock: 66 MHz
CUDA Parallel-Processing Cores: 4,608
NVIDIA Tensor Cores: 576
NVIDIA RT Cores: 72
GPU Memory: 24 GB GDDR6

AWS Specifications
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases.
Instance types comprise varying combinations of CPU, memory, storage, and networking
capacity, giving us the flexibility to choose the appropriate mix of resources.
For this model, we used a high-frequency 3.3 GHz Intel Xeon Scalable processor.
P3 instances use customized Intel Xeon E5-2686v4 processors running at up to 2.7 GHz. They
are available in three sizes (all VPC-only and EBS-only).

1

https://www.isic-archive.com/#!/onlyHeaderTop/gallery?filter=%5B%22benign_malignant%7Cb
enign%22%2C%22benign_malignant%7Cmalignant%22%5D

https://www.isic-archive.com/#!/onlyHeaderTop/gallery?filter=%5B%22benign_malignant%7Cbenign%22%2C%22benign_malignant%7Cmalignant%22%5D
https://www.isic-archive.com/#!/onlyHeaderTop/gallery?filter=%5B%22benign_malignant%7Cbenign%22%2C%22benign_malignant%7Cmalignant%22%5D


Packed with 5,120 CUDA cores and another 640 Tensor cores and can deliver up to 125
TFLOPS.

Why use this for machine learning on AWS?

NVIDIA Tesla V100 GPUs The First Tensor Core GPU

The P3 instances are designed to handle compute-intensive machine learning, deep learning, and
computational heavy workloads.

Comparison Specs



AI Model
The model was adapted from an existing image classifier provided as a Keras tutorial2. We
generate a dataset of images with two labels, Benign and Malignant. This dataset is split into a
training set containing 80% of the images and a validation set containing 20% of the images. The
dataset is bolstered artificially through data augmentation, in which random transformations are
applied to the training images. This allows the model to analyze different aspects of the training
data and slows down overfitting. The images’ size and color values are standardized to make the
neural network process them more efficiently. The model starts with a data augmentation
preprocessor, followed by a Rescaling layer and a Dropout layer before the final classification
layer. The Dropout layer is used to prevent overfitting.

Model Hyperparameters
The following are hyperparameters we configure before training the model:

● Training/validation data split: We use 80% of the dataset to train the model, and 20% to
validate the model’s ability to classify images. This helps us understand how well our
model is performing its assigned task with the given hyperparameters.

● Optimization algorithm: We use the Adam algorithm with a learning rate of 0.001 as our
optimizer. Keras offers 10 optimizers to choose from, but we selected Adam because the
image classification tutorial the model is adapted from uses Adam, and because Adam
has lower training cost compared to other algorithms.

2 https://keras.io/examples/vision/image_classification_from_scratch

https://keras.io/examples/vision/image_classification_from_scratch


● Layer activation functions: For the model’s hidden layers, we use the ReLU activation
function which, for input x, outputs max(0.0, x). For the model’s classification (output)
layer, we use the sigmoid (logistic) activation function because it is the best output
activation function for binary classification.

● Loss function: Because we are working in binary classification, we use the Binary
Cross-entropy loss function to calculate the difference between expected and predicted
labels.

● Drop-out Rate: The drop-out rate of 0.5 causes half of the input units for the Dropout
layer to be set to 0, and the other half to be scaled up so that the sum over all inputs
remains the same. This helps prevent overfitting.

● Epochs: The number of epochs defines the number of times that the neural network will
analyze the entire training set. We vary the number of epochs (iterations) for training
depending on the size of the training set and what our target metrics are. For instance,
with a dataset of 2,000 images, we train for 25 epochs before the accuracy stops growing
at a significant rate. With the full dataset of 59,676 images, we can already achieve an
accuracy above 92% after only 3-5 epochs.

● Batch size: The batch size dictates the number of samples encountered in training before
the model is updated. We experimented with batch sizes of 128 and 32 before finding that
a batch size of 16 gave us the best results.

On-Ground Training on Full Dataset

Process to Train Model On-Ground
1) Install conda and TensorFlow
2) In the same directory, store image files and model.py file
3) To train the model, run python3 model.py

Process to Train Model in AWS Sagemaker

1) Sign into the Amazon Sagemaker Console



2) Create a new Notebook Instance



a) Specify an instance name
b) Specify an instance type(We used a ml.p3.2xlarge) a Single NVIDIA V100 GPU

as referenced above.



3) Open terminal and Ensure TensorFlow is installed

4) Open Jupyter and ensure that ‘conda_python3’ is the selected kernel



5) Download image data into the Sagemaker instance

6) Import the local/VM ‘model.py’ source (Note: ensure the image data format is
‘channels_last’ as opposed to ‘channels_first’)

7) Open Terminal
8) Run the following command to enter the conda environment for TensorFlow:

source activate tensorflow2_p310
9) Run the following command to train the model:

python3 model.py



Comparison 1: VM GPU vs AWS CPU
Dataset: 200 images
Epochs: 10

Training Results on VM

Training Results on AWS CPU

Results: The AWS training was much slower, largely due to the superior computing power of the
VM GPU compared to the AWS CPU. In order to achieve better performance on AWS, we will
need to upgrade the computing resources.



Comparison 2: VM GPU vs AWS GPU
Dataset: 10,000 images
Epochs: 10

Training Results on AWS GPU

Training Results on VM GPU



Results: In this case, the AWS instance trained faster than the VM environment with similar
computing power.

Cost

This cost was directly related to training 10,000 Images with SageMaker on a P3 Instance as
described in the specifications section.

Comparison/Analysis
Our experience with training a machine learning model on AWS using SageMaker has been
incredibly rewarding. We successfully trained our model on the ISIC dataset, which is widely
used by Mayo Clinic for skin cancer research. By leveraging AWS and cloud services, we were
able to scale this research effectively and efficiently. Remarkably, we achieved similar results to
those produced using the $5,000+ equipment at Iowa State ETG, but at a fraction of the cost,
spending less than $100. This breakthrough demonstrates that the barriers to entry, such as cost
and scalability, can be significantly reduced when harnessing the power of cloud-based services
like AWS, making advanced machine learning more accessible and affordable for researchers
and organizations worldwide.

Conclusion
We discovered that both on-cloud and on-premises training approaches yielded similar results in
our experiments. However, the on-cloud training proved to be superior due to its reduced
reliance on local resources. This advantage enables researchers and organizations to access
state-of-the-art computing power without the need for expensive hardware, making the
cloud-based training approach more cost-effective, flexible, and scalable for machine learning
applications.



Appendix

Local model.py
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt

image_size = (180, 180)
batch_size = 32

train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(
"Images",
validation_split=0.2,
subset="both",
seed=1337,
image_size=image_size,
batch_size=batch_size,

)

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):

for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(int(labels[i]))
plt.axis("off")

plt.savefig('data.png')

data_augmentation = keras.Sequential(
[

layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),

]
)

plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):

for i in range(9):
augmented_images = data_augmentation(images)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")

plt.savefig('augment.png')

augmented_train_ds = train_ds.map(
lambda x, y: (data_augmentation(x, training=True), y))

# Apply `data_augmentation` to the training images.



train_ds = train_ds.map(
lambda img, label: (data_augmentation(img), label),
num_parallel_calls=tf.data.AUTOTUNE,

)
# Prefetching samples in GPU memory helps maximize GPU utilization.
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
val_ds = val_ds.prefetch(tf.data.AUTOTUNE)

def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)

# Entry block
x = layers.Rescaling(1.0 / 255)(inputs)
x = layers.Conv2D(128, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)

previous_block_activation = x # Set aside residual

for size in [256, 512, 728]:
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

# Project residual
residual = layers.Conv2D(size, 1, strides=2, padding="same")(

previous_block_activation
)
x = layers.add([x, residual]) # Add back residual
previous_block_activation = x # Set aside next residual

x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)

x = layers.GlobalAveragePooling2D()(x)
if num_classes == 2:

activation = "sigmoid"
units = 1

else:
activation = "softmax"
units = num_classes



x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)
return keras.Model(inputs, outputs)

model = make_model(input_shape=image_size + (3,), num_classes=2)
keras.utils.plot_model(model, show_shapes=True)

epochs = 10

callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.keras"),

]
model.compile(

optimizer=keras.optimizers.Adam(1e-3),
loss="binary_crossentropy",
metrics=["accuracy"],

)
model.fit(

train_ds,
epochs=epochs,
callbacks=callbacks,
validation_data=val_ds,

)

img = keras.preprocessing.image.load_img(
"Images/Malignant/ISIC_9998682.JPG", target_size=image_size

)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis

predictions = model.predict(img_array)
score = float(predictions[0])
print(f"This image is {100 * (1 - score):.2f}% benign and {100 *
score:.2f}% malignant.")

AWS Model.py
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt

#tf.keras.backend.set_image_data_format("channels_last")

image_size = (180, 180)
batch_size = 16

train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(
"Images",



validation_split=0.2,
subset="both",
seed=1337,
image_size=image_size,
batch_size=batch_size,

)

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):

for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(int(labels[i]))
plt.axis("off")

plt.savefig('data.png')

data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
]

)

plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):

for i in range(9):
augmented_images = data_augmentation(images)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")

#plt.savefig('augment.png')

augmented_train_ds = train_ds.map(
lambda x, y: (data_augmentation(x, training=True), y))

# Apply `data_augmentation` to the training images.
train_ds = train_ds.map(

lambda img, label: (data_augmentation(img), label),
num_parallel_calls=tf.data.AUTOTUNE,

)
# Prefetching samples in GPU memory helps maximize GPU utilization.
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
val_ds = val_ds.prefetch(tf.data.AUTOTUNE)

def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)

# Entry block
x = layers.Rescaling(1.0 / 255)(inputs)



x = layers.Conv2D(128, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)

previous_block_activation = x # Set aside residual

for size in [256, 512, 728]:
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

# Project residual
residual = layers.Conv2D(size, 1, strides=2, padding="same")(

previous_block_activation
)
x = layers.add([x, residual]) # Add back residual
previous_block_activation = x # Set aside next residual

x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)

x = layers.GlobalAveragePooling2D()(x)
if num_classes == 2:
activation = "sigmoid"
units = 1
else:
activation = "softmax"
units = num_classes

x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)
return keras.Model(inputs, outputs)

model = make_model(input_shape=image_size + (3,), num_classes=2)
#keras.utils.plot_model(model, show_shapes=True)

epochs = 10

callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.keras"),

]



model.compile(
optimizer=keras.optimizers.Adam(1e-5),
loss="binary_crossentropy",

#loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"],

)
model.fit(

train_ds,
epochs=epochs,
callbacks=callbacks,
validation_data=val_ds,

)

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:

json_file.write(model_json)
# serialize weights to HDF5
print("Saved model to disk")

model.save(
"model.h5"

)

img = keras.preprocessing.image.load_img(
"Images/Malignant/ISIC_0032547.JPG", target_size=image_size

)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis

predictions = model.predict(img_array)
score = float(predictions[0])
# print(f"This image is {100 * (1 - score):.2f}% benign and {100 *
score:.2f}% malignant.")


