IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Asad Abdalla, Rashed Alyammahi, Mohammed Elbermawy, Yannick Fumukani, Richard Gonzalez, Meet Patel, Adam Sweiger **Client/Advisor**: Dr. Ashraf Gaffar

Introduction

- Goal 1: Collection and organization of skin lesion image data
- Goal 2: Development of binary image classification AI model tailored to identifying the malignancy of collected image data
- Goal 3: Graphical User Interface utilizing the model for simple predictive capabilities

Overview

- Classification of skin lesions
 - Benign
 - Malignant
- Develop binary image classification AI model
 - Evaluate and Compare Performance on:
 - Local Environment
 - Cloud Environment
- Graphical User Interface for easy utilization by such target audiences as medical professionals and laypeople (i.e. <u>patients</u>)

Binary Classification Model

GUI that allows image upload and returns quick analysis

Web Interface

AWS Endpoint

to

Binary

Classification

Model

Skin Lesion Image Data

ماإلى

Benign

Malignant

Health Care Determination

Results

- Ground: Binary image classification model for identifying benign/malignant
 - Dataset scaled to over 67,000 images
 - Achieved <u>accuracy of 92%</u>
- **Cloud**: Efficiently scaled research using AWS (200,2K,10K Images)
 - Achieved comparable results to expensive equipment used at Iowa State ETG
- User Interface: Single-Paged web-based Application for ease of interaction between user and the backend
 - AWS Endpoint built upon existing trained model [On-cloud training]
 - AWS Lambda Function created to link API gateway and endpoint

Skin Lesion Classification (sdmay23-05)

Final Poster Spring 2023 Iowa State E CPE SE April 29, 2023