
Skin Lesion Classification

S E 492
Team sdmay23-05
April 29, 2023
Final Report

Team Members
Adam Sweiger - On-Ground AI Developer
Asad Abdalla - User Interface Developer

Rashed Alyammahi - User Interface Developer
Mohammed Elbermawy - User Interface Developer

Yannick Fumukani - User Interface Developer
Richard Gonzalez - On-Cloud AI Developer

Meet Patel - User Interface Developer

Client/Advisor
Dr. Ashraf Gaffar, Teaching Professor[E CPE]

Table of Contents
Revised Project Design 3
Implementation Details 8

Deployment 9
1. Overview 9
2. AWS SageMaker 10

Overview 10
Use of Sagemaker in this project 10

3. Model and endpoint 11
Overview 11
Use of endpoint workflow in this project 11

4. Lambda function 11
Overview 11
Use of lambda function workflow 11

5. API Gateway 12
Overview 12
Use of API Gateway workflow 12

6. NodeJs Server 12
7. UI 13

Overview 13
Use of React.JS in this project 13

Testing Process and Testing Results 14
Work Context 16
Appendix I - Operation Manual 17
Appendix II - Alternative Designs 22
Appendix III - Other Considerations 23
Appendix IV - Code 24

2

Revised Project Design

This project is composed of four main components: an AI image classification model that classifies skin
lesions as benign or malignant, a virtual machine for on-ground model training, an AWS Sagemaker
Notebook instance for on-cloud model training, and a User Interface for running predictions using the
trained model.

Implementation Architecture
Our project design aims to train the model in a local VM environment and Cloud AWS. Figure 1
represents our approach to the project.

Figure 1: Local VM vs Cloud approach utilized in ascertaining performance differences

We used VM where storage and RAM have been allocated by the University. They allocated us the new
linux kernel which used GPU for the research project work. This was apparent to us as the best option to
us to take advantage of the high storage and allocated memory for the project. We used the Conda
Tensorflow environment to train our model.

3

We collected a dataset of skin images from the International Skin Imaging Collaboration (ISIC). We used
publicly available libraries for skin lesions.

During training, the model will output information about the current training iteration including time
spent training, accuracy, etc. Once the model has been trained and we are using it to predict if the
particular image has skin cancer or not the output will be the result of the prediction, either benign or
malignant, as well as the confidence in this prediction as a percentage

Skin Cancer Classification in Medical Terms:

Benign: an indication of not having skin cancer. In our case, the model will provide output based on its
confidence if the particular image has skin cancer or not.

Malignant: an indication of having skin cancer. In our case, the model will provide output based on its
confidence if the particular image has skin cancer or not.

We trained the model in Conda TensorFlow with about 67,000 images and achieved an accuracy of 92%.

Afterward, we used Amazon Sagemaker Notebook to train our model on the cloud. We efficiently scaled
research using AWS (200, 2K, 10K images). We used JupyterLab IDE and Conda Tensorflow to train our
model. We evaluated and compared the performance in VM and on Cloud. We achieved comparable
results to the expensive VM GPU used at Iowa State ETG.

Dataset
The data stems from the International Skin Imaging Collaboration (ISIC) publicly-available library of
skin lesions. The organization represents a collaborative effort between academics and industry agents
toward developing methods of recognizing and detecting melanoma. They provide a vast open-source
library of images of skin lesions of known classifications, with a broader goal of classifying other skin
disorders. Throughout this project, we trained our model using images found through the ISIC archive’s
benign/malignant filter. The total number of benign and malignant images in the archive is 59,676 and
7,061 images respectively. We started training on a small subset of these images and incrementally scaled
the dataset before eventually training on the full 67,835 images.

4

Figure 2: Schematic for Web Interface interaction with user given a sample image to pass into model

We used AWS EndPoint for harnessing the web gateway into the generated model. We used API Lambda
Function to link Endpoint to API Gateway and post method. Afterward, we used Node.js as a helper
backend for image conversion with Heroku. We used Web Interface for uploading and requesting
predictions from the model. This schema is presented in Figure 2.

5

Figure 3: Skin Lesion Website Landing Page

AWS Endpoint is used to store web gateway into the generated model. Frontend UI encodes the image to
64-bit before sending it to the server for model prediction, shown in Figure 3.

How The Design Evolved
In 491, the team considered developing an image classification model to classify livestock animals as
healthy or sick. The proposed model would take audio files of sounds made by animals, transform them
into spectrogram (image) representations, and then analyze the image representation to determine what
patterns exist for healthy and sick animals. As part of the research process, the team looked into existing
binary image classification examples. At the beginning of 492, the team received a dataset of livestock
animal sounds, but it was a small dataset of only a few hundred samples with very low audio quality. The
team decided that this dataset was not sufficient enough to train a capable model, so instead, the team
began working towards developing and training a skin lesion classification model. The team had access to
a large, publicly available dataset of high-quality images of skin lesions. In addition, classifying skin
lesions can assist in skin cancer detection and diagnosis. Although the applications are different, the core
problem of binary image classification is the same, so the same model architecture can be applied to both
problems.

6

Requirements
1. Functional Requirements:

● AI model must be trained on images of benign and malignant skin lesions.
● AI model should be scalable and should be able to train on datasets of varying sizes up to

67,000 images.
● After training, the model should be able to analyze an image of a skin lesion and classify

the lesion as benign or malignant.
● The accuracy of the AI model should improve with each iteration of training.

2. Non-Functional Requirements:
● The accuracy of the model should be at least 80%.
● When trained with the same hyperparameters, the model’s accuracy and training speed

should be comparable between the on-ground environment and the on-cloud
environment.

● When a user uploads an image to the user interface, the model’s prediction should be
outputted to the user within 2 seconds.

Relevant Standards
1. IEEE 1003.1-2008 - This standard is simultaneously ISO/IEC 9945, IEEE Std 1003.1, and
forms the core of the Single Unix.
2. IEEE 1680.1-2009 - This standard ensures consistent environmental performance for the
resources used.

Engineering Constraints
● Limited storage space for on-ground training environment: When the virtual machine was first set

up by ETG for the team, it only had about 60 GB of disk space. At first, this was sufficient to
store the dataset, but as the dataset was scaled, this became too little storage space. In order to
allow the dataset to scale, the team requested additional storage from ETG, and the disk space on
the VM was increased to 150 GB, which was plenty of space to store the full dataset.

● Limited computing power: The team’s virtual machine has access to a powerful GPU that is
incredibly effective for machine learning, but as the dataset scales, training becomes slower. The
same is true for the computing resources on AWS. The computing resources are a constraint that
slows down the training process.

Security Concerns and Countermeasures
1. Physical Security: Because this project is entirely software-based, there are no concerns for

physical security.
2. Cybersecurity: The only cybersecurity concerns on this project are ensuring that only the team

has access to the virtual machine and AWS accounts. External parties gaining access to the virtual
machine could lead to the team losing important data, files, and code. Comprising the security of
an AWS account can lead to unwanted charges and allow others to gain access to team members’
payment information. The team is not concerned with the security of our AI model’s dataset
because it contains publicly available data.

7

Implementation Details

AI Model
The model was adapted from an existing image classifier from a Keras tutorial. We generate a dataset of
images with two labels, Benign and Malignant. This dataset is split into a training set containing 80% of
the images and a validation set containing 20% of the images. The dataset is bolstered artificially through
data augmentation, in which random transformations are applied to the training images. This allows the
model to analyze different aspects of the training data and slows down overfitting. The images’ size and
color values are standardized to make the neural network process them more efficiently. The model starts
with a data augmentation preprocessor, followed by a Rescaling layer and a Dropout layer before the final
classification layer. The Dropout layer is used to prevent overfitting. The full code for the model is
provided in Appendix IV.

Model Hyperparameters
The following are hyperparameters we configure before training the model:

● Training/validation data split: We use 80% of the dataset to train the model, and 20% to validate
the model’s ability to classify images. This helps us understand how well our model is performing
its assigned task with the given hyperparameters.

● Optimization algorithm: We use the Adam algorithm with a learning rate of 0.001 as our
optimizer. Keras offers 10 optimizers to choose from, but we selected Adam because the image
classification tutorial the model is adapted from uses Adam, and because Adam has lower training
cost compared to other algorithms.

● Layer activation functions: For the model’s hidden layers, we use the ReLU activation function
which, for input x, outputs max(0.0, x). For the model’s classification (output) layer, we use the
sigmoid (logistic) activation function because it is the best output activation function for binary
classification.

● Loss function: Because we are working in binary classification, we use the Binary Cross-entropy
loss function to calculate the difference between expected and predicted labels.

● Drop-out Rate: The drop-out rate of 0.5 causes half of the input units for the Dropout layer to be
set to 0, and the other half to be scaled up so that the sum over all inputs remains the same. This
helps prevent overfitting.

● Epochs: The number of epochs defines the number of times that the neural network will analyze
the entire training set. We vary the number of epochs (iterations) for training depending on the
size of the training set and what our target metrics are. For instance, with a dataset of 2,000
images, we train for 25 epochs before the accuracy stops growing at a significant rate. With the
full dataset of 67,835 images, we can already achieve an accuracy of 92% after only 10 epochs.

● Batch size: The batch size dictates the number of samples encountered in training before the
model is updated. The team experimented with batch sizes of 128 and 32 before finding that a
batch size of 16 gave the best results.

8

Deployment
1. Overview

The team used a multi-layered architecture to deploy a model consisting of AWS services such as
SageMaker, Lambda function, API Gateway, and a NodeJS server. This architecture allowed for
the deployment of a scalable, production-grade infrastructure to serve user predictions regarding
the malignancy of a particular skin lesion image. The overall data flow of information is shown
in Figure 4.
Using SageMaker allowed for the creation of an endpoint (i.e. the URL of the entry point for an
AWS web service) for the generated model, a managed infrastructure that can serve malignancy
predictions to users. To interact with this endpoint, a Lambda function that invokes the endpoint
and returns the prediction as a JSON file was utilized. However, since direct requests cannot be
sent to Lambda, an API Gateway was added as an additional layer that triggers the Lambda
function.
To further enhance the user experience, a NodeJS server was incorporated to more easily allow
the user to upload and request a prediction from the model, without directly communicating with
it in a secure shell command line interface. This server sends requests to the API Gateway, which
triggers the Lambda function and ultimately triggers the model endpoint. This multi-layered
architecture allowed for the creation of a robust, scalable infrastructure for serving predictions to
users while providing a seamless user experience.

Figure 4: Deployment of model toward the generation of graphical user interface

9

2. AWS SageMaker

Overview
SageMaker is a fully-managed service provided by Amazon Web Services (AWS) that enables
developers and data scientists to build, train, and deploy machine learning models at scale. It
offers tools and services that streamline the entire machine-learning workflow, from data
preparation and labeling to deployment and monitoring.

One of the key advantages of SageMaker is that it abstracts away many of the complexities
involved in building and deploying machine learning models. It provides a range of pre-built
algorithms and frameworks and powerful training and deployment capabilities, making it easier
and faster to build and deploy models in production environments. With SageMaker, developers,
and data scientists can focus on building better models and delivering value to their organizations
rather than worrying about infrastructure and management tasks.

Use of Sagemaker in this project
To deploy the generated machine learning model, a three-step process was undertaken. First, the
model file (h5 format) was uploaded and a shared notebook instance was created, providing a
collaborative environment for developing and testing our models.

Next, the model was converted to a less proprietary archive format (i.e. tar.gz), which is more
common for deploying machine learning models. This allowed for the preparation of the model
for deployment in a way compatible with traditional deployment options.

Finally, an endpoint was created for the model and tested locally. This endpoint is a managed
infrastructure that allows for the serving of predictions to users. Various tools and services in the
AWS ecosystem (i.e. S3, Lambda, etc.) were available to us to create the endpoint and manage its
lifecycle. Once the endpoint was created, it was tested locally.

Deploying the machine learning model involved converting it to a deployable file format, creating
an endpoint to serve predictions, and testing it locally. As previously noted, this process allowed
for the deployment of the model in a manner that is compatible with traditional deployment
options and met the stated goals of the project.

10

3. Model and endpoint

Overview
One of the key features of SageMaker is its ability to simplify the process of deploying machine
learning models in production. It provides various options for deploying models, including
real-time endpoints for serving predictions, batch transforms for processing large datasets, and
hosting models on edge devices. SageMaker also provides automatic model scaling, fault
tolerance, and monitoring, which helps ensure that the models are always available and
performing optimally.

Use of endpoint workflow in this project
The specific endpoint implementation found in this project involves sending images in the
Content-type of Application/x-image. A binary classification model generated by the team was
deployed, predicting whether the input image is benign or malignant with a probability of
confidence. The response from the endpoint is a binary array of [decimal point, decimal point],
which corresponds to the probabilities of the input image being benign or malignant. The first
decimal point represents the probability of the image being benign, while the second decimal
point represents the probability of the image being malignant.

To summarize, the endpoint workflow in SageMaker involves deploying the model, sending data
in the expected format, running the inference pipeline, and receiving the prediction. In this
implementation, images are sent in the Content-type of Application/x-image, and the response is a
binary array of [decimal point, decimal point] corresponding to the probabilities of the input
image being benign or malignant. This implementation allows us to use SageMaker to serve
predictions to the user, with the flexibility of customizing the input and output formats based on
the specific use case.

4. Lambda function

Overview
The lambda function is a serverless computing service. It allows running code without
provisioning or managing servers, enabling to build scalable, event-driven applications. With
Lambda, you can upload your code as a function, and AWS runs and scales the function in
response to requests or events.
Various events, including HTTP requests, can trigger Lambda functions. When triggered, a
function runs in a containerized environment, automatically scaled up or down based on the
incoming request volume.

Use of lambda function workflow
We used Lambda to invoke our endpoint. Instead of sending requests directly to our endpoint, we
used a Lambda function to handle the request and send it to the endpoint. This approach allows us
to add processing or validation before invoking the endpoint and helps us manage the request
flow more efficiently.

11

The Lambda function workflow involves receiving a base64-encoded image as input and using
the AWS SDK to send the request to the endpoint. Once the prediction is generated, it is returned
as a binary array in the format of [benign, malignant]. The Lambda function returns the result in a
JSON format file that includes the prediction, which can be used in our application to make
decisions or take actions. By using Lambda, we could simplify the integration process and create
a more efficient and scalable system.

5. API Gateway

Overview
API Gateway is a fully managed service that enables developers to create, publish, and manage
secure APIs. It allows users to expose their AWS Lambda functions and HTTP endpoints as
RESTful APIs, making connecting applications and services to the cloud easy. The service
provides a range of features, such as authentication and authorization, making it a powerful tool
for building scalable and secure APIs. It acts as a front door for the APIs, allowing developers to
define the request and response format, control access, and monitor usage.

Use of API Gateway workflow
The API Gateway workflow starts with a POST request that contains an image in binary format
and a specified content-type of application/x-image. This request is sent to our API Gateway
endpoint, which is set up to trigger a Lambda function.
The Lambda function invokes our model endpoint with the provided image and receives the
prediction result. The Lambda function then returns a JSON response containing the prediction
result, a binary array of [0, 1], indicating whether the image is benign or malignant.
The API Gateway serves as an interface between the client and the Lambda function, allowing for
seamless communication and triggering of our endpoint. By leveraging API Gateway and
Lambda, we created a scalable and efficient infrastructure for serving predictions to our users.

6. NodeJs Server

Adding a NodeJS server to our prediction application provided a solid foundation for building a
full-fledged application that includes user registration and authentication. The server acts as a
middleware between the client and our API gateway, enabling the client to securely send requests
to our prediction application. The server handles user authentication, manages user sessions, and
forwards requests to the API gateway.

The complete workflow of our application is as follows: The client sends a request to the NodeJS
server, which validates the user's credentials and creates a session. The server then sends a request
to the API gateway, passing along the user's session information and the image data. The API
gateway triggers the Lambda function, which calls our model endpoint and generates a prediction.
The prediction is then returned to the Lambda function, which formats it as a response in JSON
format and returns it to the API gateway. Finally, the API gateway returns the response to the
NodeJS server, which forwards it to the client.

12

7. UI

Overview
For our graphical user interface, our team created a Single Page Application. It is simple and easy
to use. We built this application using React.js.

An open-source JavaScript package called React.js is mainly used for creating user interfaces
(UIs). It was created by Facebook, and Facebook and a developer community are now
maintaining it.

React gives programmers the ability to create reusable user interface (UI) components that may
be combined to create intricate, dynamic online apps. The main strength of React is its ability to
quickly update and render components in response to modifications in the application state
without requiring a complete page refresh.

Developers describe the intended user interface, while React takes care of the updates and
rendering thanks to its declarative programming approach.

Use of React.JS in this project
Because React.js offers a simple and highly effective way to create UI components, we chose it
for our frontend development. We used React's features for every part of our front-end
application. HTTP requests are sent through Axios, a third-party module that offers more robust
handling of such requests than the native JavaScript fetch API, we made it easier for users to
communicate with our backend. We used hooks, and in our instance the useState hook, to update
our UI based on HTTP responses.

In conclusion, React is a great UI library that has changed the way many developers create UI
today; it’s been a very good choice for our frontend application, and it has made our frontend
development simple and easy.

8. Frontend and Backend Connection

Overview:
AWS Endpoint is built upon existed training model. We have stored our model in AWS Endpoint.
We used axios module to connect the frontend with the backend. The AXIOS module is an
easy-to-use API for making HTTP requests from Web Server to the Backend. AXIOS supports
methods such as GET, POST, PUT, and DELETE. When a GET request is sent to the API, then it
returns a list of posts in JSON Format.

Use of AXIOS Module
AXIOS module is installed as a dependency. AXIOS dependency is called in the Package.json
file. The JSON file is used to send and receive data configuration. When receiving data, AXIOS
automatically parses the response data and returns it as Javascript. In the main file, a function is

13

created to receive the prediction data. When a user uploads the file, this data is sent to aws
endpoint and it returns the prediction result.

Testing Process and Testing Results
Machine learning incorporates testing into the training process. For this model, we split our dataset into a
training set and a validation set. The training set, comprising 80% of the images, is used by the neural
network to learn during each training iteration. The validation set, making up 20% of the images, is used
after each epoch to evaluate the performance of the model on new data that it has not been trained on. As
the model tests itself during training, it will adjust its behavior in order to improve its accuracy. This is a
core part of how the model’s performance continues to improve after successive training iterations. The
following is a sample training run of 10 epochs for the model on the full ISIC dataset of about 67,000
images, as illustrated in Figure 5.

Figure 5: Demonstration of 10 epochs run on full ISIC dataset

The accuracy measures the percentage of correct predictions made by the model on the training data. The
validation accuracy measures the same but for the validation data. The loss and validation loss measure
the error of the model on the training set and validation set, respectively. These metrics are used to
describe the ability of the model to classify images. Here, a high accuracy and a low loss indicate that the
model predicts correctly very often, and when it is incorrect, the error is usually small. Because the loss is
very close to the validation loss and the accuracy is very close to the validation accuracy, we can conclude
that the model is fitting the data well and there is no overfitting or underfitting. When training, if we
achieve a result that is lower than desired, we change hyperparameters and observe the effect to determine
what hyperparameter tuning will maximize the model’s performance.

Another part of the testing process for this project is comparing training results for our on-ground
environment and our cloud environment. By comparing these results, we can evaluate the
cost-effectiveness of training on the cloud. Figure 6 demonstrates an example of the difference between
the training speed of the two environments when training the same model with the same dataset and
hyperparameters. The AWS training was faster than the on-ground training while achieving similar
accuracy at a fraction of the cost. Throughout this project, the total cost to train on AWS Sagemaker was
less than $100, while purchasing a GPU equivalent in power to those on the VM and AWS would cost
upwards of $5,000 making AWS the more cost-effective option. From this, we conclude that the cloud is a
powerful and cost-effective tool for machine learning and that many large-scale machine learning projects
can save money by training in the cloud.

14

Figure 6: Variation in processing time as a function of epoch
between AWS and VM environments

The user interface also presents opportunities for testing by utilizing data outside the existing training
dataset. As noted previously, the model incorporates a portion of the existing training data for its official
validation metric, but it does not use data that it has never seen before. The user interface, in this case,
allows for the model to be rigorously tested against data that is otherwise completely foreign to the
original dataset that was used to both train and validate the model. Therefore, the stated numerical
accuracy of the model can have greater significance when tested against completely new images as each
new user continuously tests against the existing model, and allows the developer to update the model in
the future as new data comes in. Figure 7 illustrates the use of the built UI with an underlying model
making an accurate prediction of the malignancy of a test image that it has never interacted with (either as
a part of the training or validation set).

15

Figure 7: User Interface generating an accurate malignancy prediction of a sample skin lesion image

Work Context
Throughout our research for this project, we found examples of machine-learning models being used as
diagnostic tools for detecting and diagnosing skin cancer. Many studies have found that the use of AI
tools in diagnostic settings significantly increases the accuracy of diagnosing skin lesions. With this
project, the team further demonstrates that an image classification algorithm can be used to diagnose skin
cancer. In addition, the project demonstrates the benefits of using the cloud for training machine learning
models. The team’s advisor and client, Dr. Gaffar, has previously worked on a project with Mayo Clinic
that trains AI models as diagnostic tools for skin cancer using large datasets. This project, however, has
never used on-cloud training, only on-ground training. The team’s documentation and results can be used
by the Mayo Clinic project and other large-scale machine learning projects to assist in transitioning from
on-ground training to on-cloud training, which has been demonstrated to be extremely cost-effective. By
avoiding purchasing expensive GPUs for on-ground training, large-scale machine learning projects can
increase their training capabilities and improve the performance of their models.

16

Appendix I - Operation Manual

User Interface
To obtain predictions for an image using the user interface, please follow the steps below:

1. Click on the "Choose File" button to select a picture from your local computer.
2. Once you have selected a picture, click on the "Upload Image" button to submit it to the model

for prediction.
3. Wait while the application processes your request for prediction. This may take a few moments.
4. Once the prediction is ready, two bars will appear displaying the probability of the image being

Malignant and Benign, respectively.
5. If you wish to predict another image, repeat the above steps starting from step 1.

Virtual Machine Training Environment Setup
1) Install conda and TensorFlow
2) In the same directory, store image files and model.py file
3) To train the model, run python3 model.py

AWS Training Environment Setup
1) Sign into the Amazon Sagemaker Console

17

18

2) Create a new Notebook Instance

a) Specify an instance name
b) Specify an instance type(We used a ml.p3.2xlarge) a Single NVIDIA V100 GPU

as referenced above.

19

3) Open terminal and Ensure TensorFlow is installed

4) Open Jupyter and ensure that ‘conda_python3’ is the selected kernel

20

5) Download image data into the Sagemaker instance

6) Import the local/VM ‘model.py’ source (Note: ensure the image data format is
‘channels_last’ as opposed to ‘channels_first’)

7) Open Terminal
8) Run the following command to enter the conda environment for TensorFlow:

source activate tensorflow2_p310
9) Run the following command to train the model:

python3 model.py

21

Appendix II - Alternative Designs

In 491, the team considered developing an image classification model to classify livestock animals as
healthy or sick. The proposed model would take audio files of sounds made by animals, transform them
into spectrogram (image) representations, and then analyze the image representation to determine what
patterns exist for healthy and sick animals. We started creating and training the model. We used binary
classification to create the model so that if our project goes wrong, then we do not have to create a new
model.
Our plan was that if the audio does not work, we will train the model with different datasets. We
presented this model during lightning talks and our presentation for 491. As part of the research process,
the team looked into existing binary image classification examples. At the beginning of 492, the team
received a dataset of livestock animal sounds, but it was a small dataset of only a few hundred samples
with very low audio quality. The audio files were not labeled which made them unusable as a dataset. So,
the team decided that this dataset was not sufficient enough to train a capable model, so instead, the team
began working towards developing and training a skin lesion classification model.

22

Appendix III - Other Considerations

We used following specifications:-
VM Specifications
Linux sdmay23-05.ece.iastate.edu 5.15.0-52-generic #58-Ubuntu SMP x86_64 x86_64 x86_64
GNU/Linux

CPU Info:
Product: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz
Architecture: x86_64
Cores: 8
Max Memory Size: 768 GB
Memory Type: DDR4-2666
Maximum Memory Speed: 2666 MHz

GPU info:
Product: TU102GL [Quadro RTX 6000/8000]
Width: 64 bits
Clock: 66 MHz

AWS Specifications
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases.
Instance types comprise varying combinations of CPU, memory, storage, and networking
capacity, giving us the flexibility to choose the appropriate mix of resources.
For this model, we used a high-frequency 3.3 GHz Intel Xeon Scalable processor.
P3 instances use customized Intel Xeon E5-2686v4 processors running at up to 2.7 GHz. They
are available in three sizes (all VPC-only and EBS-only).

NVIDIA Tesla V100 GPUs The First Tensor Core GPU

Packed with 5,120 CUDA cores and another 640 Tensor cores and can deliver up to 125
TFLOPS.

The P3 instances are designed to handle compute-intensive machine learning, deep learning, and
computational heavy workloads.

23

Appendix IV - Code

Binary image classification model code:
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import matplotlib.pyplot as plt

image_size = (180, 180)

batch_size = 16

train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(

"AllImages",

validation_split=0.2,

subset="both",

seed=1337,

image_size=image_size,

batch_size=batch_size,

)

data_augmentation = keras.Sequential(

[

layers.RandomFlip("horizontal"),

layers.RandomRotation(0.1),

]

)

augmented_train_ds = train_ds.map(

lambda x, y: (data_augmentation(x, training=True), y))

Apply `data_augmentation` to the training images.

train_ds = train_ds.map(

lambda img, label: (data_augmentation(img), label),

num_parallel_calls=tf.data.AUTOTUNE,

)

Prefetching samples in GPU memory helps maximize GPU utilization.

train_ds = train_ds.prefetch(tf.data.AUTOTUNE)

val_ds = val_ds.prefetch(tf.data.AUTOTUNE)

def make_model(input_shape, num_classes):

24

inputs = keras.Input(shape=input_shape)

Entry block

x = layers.Rescaling(1.0 / 255)(inputs)

x = layers.Conv2D(128, 3, strides=2, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

previous_block_activation = x # Set aside residual

for size in [256, 512, 728]:

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

Project residual

residual = layers.Conv2D(size, 1, strides=2, padding="same")(

previous_block_activation

)

x = layers.add([x, residual]) # Add back residual

previous_block_activation = x # Set aside next residual

x = layers.SeparableConv2D(1024, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.GlobalAveragePooling2D()(x)

if num_classes == 2:

activation = "sigmoid"

units = 1

else:

activation = "softmax"

units = num_classes

25

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(units, activation=activation)(x)

return keras.Model(inputs, outputs)

model = make_model(input_shape=image_size + (3,), num_classes=2)

epochs = 10

callbacks = [

keras.callbacks.ModelCheckpoint("save_at_{epoch}.keras"),

]

model.compile(

optimizer=keras.optimizers.Adam(1e-3),

loss="binary_crossentropy",

metrics=["accuracy"],

)

model.fit(

train_ds,

epochs=epochs,

callbacks=callbacks,

validation_data=val_ds,

)

26

